A Multi-Model Method for Short-Utterance Speaker Recognition
نویسندگان
چکیده
The length of the test speech greatly influences the performance of GMM-UBM based text-independent speaker recognition system, for example when the length of valid speech is as short as 1~5 seconds, the performance decreases significantly because the GMM-UBM based speaker recognition method is a statistical one, of which sufficient data is the foundation. Considering that the use of text information will be helpful to speaker recognition, a multi-model method is proposed to improve short-utterance speaker recognition (SUSR) in Chinese. We build a few phoneme class models for each speaker to represent different parts of the characteristic space and fuse the scores to fit the test data on the models with the purpose of increasing the matching degree between training models and test utterance. Experimental results showed that the proposed method achieved a relative EER reduction of about 26% compared with the traditional GMM-UBM method.
منابع مشابه
Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملCNN-Based Joint Mapping of Short and Long Utterance i-Vectors for Speaker Verification Using Short Utterances
Text-independent speaker recognition using short utterances is a highly challenging task due to the large variation and content mismatch between short utterances. I-vector and probabilistic linear discriminant analysis (PLDA) based systems have become the standard in speaker verification applications, but they are less effective with short utterances. To address this issue, we propose a novel m...
متن کاملDenoising autoencoder-based speaker feature restoration for utterances of short duration
This paper describes a speaker feature restoration method for improving text-independent speaker recognition with short utterances. The method employs a denoising autoencoder (DAE) to compensate speaker features of a short utterance which contains limited phonetic information. It first estimates phonetic distribution in the utterance as posteriors based on speech models and then transforms an i...
متن کاملSpeech unit category based short utterance speaker recognition
Information of speech units like vowels, consonants and syllables can be a kind of knowledge used in text-independent Short Utterance Speaker Recognition (SUSR) in a similar way as in textdependent speaker recognition. In such tasks, data for each speech unit, especially at the time of recognition, is often not enough. Hence, it is not practical to use the full set of speech units because some ...
متن کاملSpeaker Recognition of Noisy Short Utterance Based on Speech Frame Quality Discrimination and Three-stage Classification Model
The noisy short utterance is polluted by noise and corpus is less, so the recognition rate significantly decreased. For improving recognition rate, we proposed the dual information quality discrimination algorithm to classify the speech frames: one is differences detection and discrimination algorithm (DDADA), another is the improved SNR discrimination algorithm (ISNRDA). Based on the above two...
متن کامل